# Difference between revisions of "How to cite"

From QETLAB

(→Papers that use QETLAB: 1 more) |
(→Papers that use QETLAB: 1 more) |
||

Line 20: | Line 20: | ||

* G. C. Knee and W. J. Munro. Trotterization in universal quantum simulators under faulty control. ''Phys. Rev. A'', 91:052327, 2015. E-print: [http://arxiv.org/abs/1502.04536 arXiv:1502.04536] [quant-ph] | * G. C. Knee and W. J. Munro. Trotterization in universal quantum simulators under faulty control. ''Phys. Rev. A'', 91:052327, 2015. E-print: [http://arxiv.org/abs/1502.04536 arXiv:1502.04536] [quant-ph] | ||

* S. Lu, S. Huang, K. Li, J. Li, J. Chen, D. Lu, Z. Ji, Y. Shen, D. Zhou, and B. Zeng. ''A separability-entanglement classifier via machine learning'', 2017. E-print: [https://arxiv.org/abs/1705.01523 arXiv:1705.01523] [quant-ph] | * S. Lu, S. Huang, K. Li, J. Li, J. Chen, D. Lu, Z. Ji, Y. Shen, D. Zhou, and B. Zeng. ''A separability-entanglement classifier via machine learning'', 2017. E-print: [https://arxiv.org/abs/1705.01523 arXiv:1705.01523] [quant-ph] | ||

+ | * Y.-C. Ma, M.-H. Yung. ''Transforming Bell's inequalities into state classifiers with machine learning'', 2017. E-print: [https://arxiv.org/abs/1705.00813 arXiv:1705.00813] [quant-ph] | ||

* I. Nechita, Z. Puchała, Ł. Pawela, and K. Życzkowski. ''Almost all quantum channels are equidistant'', 2016. E-print: [https://arxiv.org/abs/1612.00401 arXiv:1612.00401] [quant-ph] | * I. Nechita, Z. Puchała, Ł. Pawela, and K. Życzkowski. ''Almost all quantum channels are equidistant'', 2016. E-print: [https://arxiv.org/abs/1612.00401 arXiv:1612.00401] [quant-ph] | ||

* E. Passaro, D. Cavalcanti, P. Skrzypczyk, and A. Acín. Optimal randomness certification in the quantum steering and prepare-and-measure scenarios. ''New J. Phys.'', 17:113010, 2015. E-print: [http://arxiv.org/abs/1504.08302 arXiv:1504.08302] [quant-ph] | * E. Passaro, D. Cavalcanti, P. Skrzypczyk, and A. Acín. Optimal randomness certification in the quantum steering and prepare-and-measure scenarios. ''New J. Phys.'', 17:113010, 2015. E-print: [http://arxiv.org/abs/1504.08302 arXiv:1504.08302] [quant-ph] |

## Revision as of 16:50, 31 May 2017

We appreciate it when QETLAB is cited within your work. You can cite it using the following DOI: 10.5281/zenodo.44637

More explicitly, you can use a bibliography entry that looks something like this:

`Nathaniel Johnston. QETLAB: A MATLAB toolbox for quantum entanglement, version 0.9. http://www.qetlab.com, January 12, 2016. doi:10.5281/zenodo.44637`

A BibTeX entry that you can use to cite QETLAB is provided here:

@misc{qetlab, author = {Nathaniel Johnston}, title = {{QETLAB}: A {MATLAB} toolbox for quantum entanglement, version 0.9}, howpublished = {\url{http://qetlab.com}}, month = Jan, year = 2016, doi = {10.5281/zenodo.44637} }

## Papers that use QETLAB

If you have made use of QETLAB in your work, please tell us or add your work here! We love hearing that QETLAB has been useful. Please also consider adding examples from your work to the documentation pages.

- S. Arunachalam, A. Molina, and V. Russo.
*Quantum hedging in two-round prover-verifier interactions*, 2013. E-print: arXiv:1310.7954 [quant-ph] - D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk.
*General method for constructing local-hidden-state (and -variable) models for multiqubit entangled states*, 2015. E-print: arXiv:1512.00277 [quant-ph] - D. Cavalcanti and P. Skrzypczyk.
*Estimating measurement incompatibility via quantum steering and nonlocality*, 2016. E-print: arXiv:1601.07450 [quant-ph] - D. Cavalcanti and P. Skrzypczyk.
*Quantum steering: a short review with focus on semidefinite programming*, 2016. E-print: arXiv:1604.00501 [quant-ph] - A. Cosentino.
*Quantum State Local Distinguishability via Convex Optimization*. PhD thesis, University of Waterloo, 2015. - R. Duan, X. Wang.
*Activated zero-error classical capacity of quantum channels in the presence of quantum no-signalling correlations*, 2015. E-print: arXiv:1510.05437 [quant-ph] - M. W. Girard, Y. Zinchenko, S. Friedland, and Gilad Gour. Erratum: Numerical estimation of the relative entropy of entanglement [Phys. Rev. A 82, 052336 (2010)],
*Phys. Rev. A*, 91:029901, 2015. - M. Gutiérrez, C. Smith, L. Lulushi, S. Janardan, and K. R. Brown.
*Errors and pseudo-thresholds for incoherent and coherent noise*, 2016. E-print: arXiv:1605.03604 [quant-ph] - G. C. Knee and W. J. Munro. Trotterization in universal quantum simulators under faulty control.
*Phys. Rev. A*, 91:052327, 2015. E-print: arXiv:1502.04536 [quant-ph] - S. Lu, S. Huang, K. Li, J. Li, J. Chen, D. Lu, Z. Ji, Y. Shen, D. Zhou, and B. Zeng.
*A separability-entanglement classifier via machine learning*, 2017. E-print: arXiv:1705.01523 [quant-ph] - Y.-C. Ma, M.-H. Yung.
*Transforming Bell's inequalities into state classifiers with machine learning*, 2017. E-print: arXiv:1705.00813 [quant-ph] - I. Nechita, Z. Puchała, Ł. Pawela, and K. Życzkowski.
*Almost all quantum channels are equidistant*, 2016. E-print: arXiv:1612.00401 [quant-ph] - E. Passaro, D. Cavalcanti, P. Skrzypczyk, and A. Acín. Optimal randomness certification in the quantum steering and prepare-and-measure scenarios.
*New J. Phys.*, 17:113010, 2015. E-print: arXiv:1504.08302 [quant-ph] - M. Piani.
*Hierarchy of efficiently computable and faithful lower bounds to quantum discord*, 2015. E-print: arXiv:1501.06855 [quant-ph] - I. Pogorelov, G. Struchalin, S. Straupe, I. Radchenko, K. Kravtsov, and S. Kulik.
*Experimental adaptive process tomography*, 2016. E-print: arXiv:1611.01064 [quant-ph] - D. Puzzuoli and J. Watrous.
*Ancilla dimension in quantum channel discrimination*, 2016. E-print: arXiv:1604.08197 [quant-ph] - Y. R. Sanders, J. J. Wallman, and B. C. Sanders. Bounding quantum gate error rate based on reported average fidelity.
*New Journal of Physics*, 18:012002, 2016. - I. Supic, P. Skrzypczyk, and D. Cavalcanti.
*Measurement-device-independent entanglement and randomness estimation in quantum networks*, 2017. E-print: arXiv:1702.04752 [quant-ph] - J. Szangolies, H. Kampermann, and D. Bruß.
*Device-independent bounds on detection efficiency*, 2016. E-print: arXiv:1609.06126 [quant-ph] - X. Wang and R. Duan.
*On the quantum no-signalling assisted zero-error classical simulation cost of non-commutative bipartite graphs*, 2016. E-print: arXiv:1601.06855 [quant-ph] - X. Wang and R. Duan.
*Rains’ bound is not additive*, 2016. E-print: arXiv:1605.00348 [quant-ph] - X. Wang and R. Duan.
*Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose*, 2016. E-print: arXiv:1606.09421 [quant-ph] - X. Wang, W. Xie, and R. Duan.
*Semidefinite programming strong converse bounds for classical capacity*, 2016. E-print: arxiv:1610.06381 [quant-ph]