Difference between revisions of "List of functions"

From QETLAB
Jump to navigation Jump to search
m (Removing red links)
m (→‎Superoperators: redlink removal)
Line 95: Line 95:
 
* <tt>[[ComplementaryMap]]</tt>: Computes the complementary map of a superoperator
 
* <tt>[[ComplementaryMap]]</tt>: Computes the complementary map of a superoperator
 
* <tt>[[DepolarizingChannel]]</tt>: Produces a depolarizing channel
 
* <tt>[[DepolarizingChannel]]</tt>: Produces a depolarizing channel
* <tt>[[DualMap]]</tt>: Computes the [[dual map|dual]] of a superoperator in the Hilbert-Schmidt inner product
+
* <tt>[[DualMap]]</tt>: Computes the dual of a superoperator in the Hilbert-Schmidt inner product
 
* <tt>[[IsCP]]</tt>: Determines whether or not a superoperator is completely positive
 
* <tt>[[IsCP]]</tt>: Determines whether or not a superoperator is completely positive
 
* <tt>[[IsHermPreserving]]</tt>: Determines whether or not a superoperator is Hermiticity preserving
 
* <tt>[[IsHermPreserving]]</tt>: Determines whether or not a superoperator is Hermiticity preserving

Revision as of 16:16, 3 December 2014

This is a list of functions provided by QETLAB, arranged by category. If you would prefer an alphabetical list of all functions please see this page. Brief descriptions of these functions are provided here, as well as links to their documentation pages, where full details and numerous examples can be found.

Basic operations

  • IsPSD: Determines whether or not a matrix is positive semidefinite
  • Tensor: Kronecker tensor product of two or more matrices
  • TensorSum: Computes a vector or operator from its tensor decomposition

Distinguishing objects

Entanglement and separability

Pure states

Mixed states

Ball of separability

  • AbsPPTConstraints: Builds the eigenvalue matrices that determine whether or not a state is absolutely PPT
  • InSeparableBall: Checks whether or not an operator is in the ball of separability centered at the maximally-mixed state
  • IsAbsPPT: Determines whether or not a density matrix is absolutely PPT

Entanglement measures

  • Negativity: Computes the negativity of a bipartite density matrix

Information theory

  • Entropy: Computes the von Neumann or Rényi entropy of a density matrix

Nonlocal games

Norms and distance measures

Vectors and pure states

Operators and mixed states

  • Fidelity: Computes the fidelity of two density matrices
  • kpNorm: Computes the (k,p)-norm of a vector or matrix
  • kpNormDual: Computes the dual of the (k,p)-norm of a vector or matrix
  • KyFanNorm: Computes the Ky Fan k-norm of an operator
  • SkOperatorNorm: Bounds the S(k)-norm of an operator
  • SchattenNorm: Computes the Schatten p-norm of an operator
  • TraceNorm: Computes the trace norm of an operator

Superoperators and channels

  • CBNorm: Computes the completely bounded norm of a superoperator
  • DiamondNorm: Computes the diamond norm of a superoperator
  • MaximumOutputFidelity: Computes the maximum output fidelity of two quantum channels

Permutations and symmetry of subsystems

Random things

Special states, vectors, and operators

Superoperators

  • ApplyMap: Applies a superoperator to an operator
  • ChoiMatrix: Computes the Choi matrix of a superoperator
  • ChoiMap: Produces the Choi map or one of its generalizations
  • ComplementaryMap: Computes the complementary map of a superoperator
  • DepolarizingChannel: Produces a depolarizing channel
  • DualMap: Computes the dual of a superoperator in the Hilbert-Schmidt inner product
  • IsCP: Determines whether or not a superoperator is completely positive
  • IsHermPreserving: Determines whether or not a superoperator is Hermiticity preserving
  • KrausOperators: Computes a set of Kraus operators for a superoperator
  • PartialMap: Applies a superoperator to a subsystem of an operator
  • PartialTrace: Computes the partial trace of a matrix
  • PartialTranspose: Computes the partial transpose of a matrix
  • Realignment: Computes the realignment of a bipartite operator
  • ReductionMap: Produces the reduction map
  • Twirl: Twirls a bipartite or multipartite operator

Unextendible product bases

  • IsUPB: Determines whether or not a set of product vectors form a UPB
  • MinUPBSize: Gives the minimum cardinality of an unextendible product basis in given dimensions
  • UPB: Generates an unextendible product basis

Miscellaneous

  • Commutant: Computes the commutant of a set of matrices
  • IsTotallyNonsingular: Determines whether or not a matrix is totally nonsingular
  • IsTotallyPositive: Determines whether or not a matrix is totally positive
  • Majorizes: Determines whether or not a vector or matrix majorizes another
  • OperatorSinkhorn: Performs the operator Sinkhorn iteration, making all single-party reduced states proportional to the identity
  • Purity: Computes the purity of a quantum state

Helper functions

  • iden: Computes a sparse or full identity matrix
  • jacobi_poly: Computes the coefficients of Jacobi polynomials
  • normalize_cols: Scales the columns of a matrix to have norm 1
  • one_factorization: Computes a 1-factorization of a list of objects
  • opt_args: Handles optional input arguments for functions
  • opt_disp: Display a message to the user (sometimes)
  • perfect_matchings: Gives all perfect matchings of N objects
  • perm_inv: Computes the inverse of a permutation
  • perm_sign: Computes the sign of a permutation
  • sk_iterate: Computes a lower bound of the S(k)-norm of an operator
  • spnull: Returns a sparse orthonormal basis for the null space
  • sporth: Returns a sparse orthonormal basis for the range
  • superoperator_dims: Computes the input, output, and environment dimensions of a superoperator
  • vec_partitions: Produces all possible partitions of a vector